Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.354
Filtrar
1.
Molecules ; 29(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38398573

RESUMO

A set of 5-(substituted benzylidene) thiazolidine-2,4-dione derivatives was explored to study the main structural requirement for the design of protein tyrosine phosphatase 1B (PTP1B) inhibitors. Utilizing multiple linear regression (MLR) analysis, we constructed a robust quantitative structure-activity relationship (QSAR) model to predict inhibitory activity, resulting in a noteworthy correlation coefficient (R2) of 0.942. Rigorous cross-validation using the leave-one-out (LOO) technique and statistical parameter calculations affirmed the model's reliability, with the QSAR analysis revealing 10 distinct structural patterns influencing PTP1B inhibitory activity. Compound 7e(ref) emerged as the optimal scaffold for drug design. Seven new PTP1B inhibitors were designed based on the QSAR model, followed by molecular docking studies to predict interactions and identify structural features. Pharmacokinetics properties were assessed through drug-likeness and ADMET studies. After that density functional theory (DFT) was conducted to assess the stability and reactivity of potential diabetes mellitus drug candidates. The subsequent dynamic simulation phase provided additional insights into stability and interactions dynamics of the top-ranked compound 11c. This comprehensive approach enhances our understanding of potential drug candidates for treating diabetes mellitus.


Assuntos
Diabetes Mellitus , Relação Quantitativa Estrutura-Atividade , Humanos , Simulação de Acoplamento Molecular , Tiazolidinas/farmacologia , Tiazolidinas/química , Reprodutibilidade dos Testes , Simulação de Dinâmica Molecular , Inibidores Enzimáticos/química , Diabetes Mellitus/tratamento farmacológico
2.
Cytoskeleton (Hoboken) ; 81(2-3): 143-150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37815120

RESUMO

Monomeric G-actin polymerizes into F-actin to perform various cellular functions. Actin depolymerization drugs, such as latrunculin-A (Lat-A), inhibit filament formation and disrupt the cytoskeleton. Interestingly, the green algae Chlamydomonas alternatively produces a non-conventional actin, NAP1, that responds to inhibition by latrunculin. However, the molecular mechanism underlying latrunculin resistance of NAP1 remains unclear because of the difficulty due to its low in vitro polymerizability. Instead of biochemical experiments, we performed molecular dynamics (MD) simulations to investigate whether NAP1 has a lower affinity for Lat-A than the conventional actins. Our phylogenetic comparison of the binding free energies shows that Lat-A is evolutionarily optimized for skeletal muscles. By decomposing the binding free energy into each amino acid residue, we found that some residues in NAP1 play an important role in latrunculin resistance, suggesting that the primary mechanism of latrunculin resistance is the loss of affinity for Lat-A due to substitutions. In conclusion, our binding-free-energy calculations using MD simulations provide the critical insight that loss of affinity is the direct mechanism of latrunculin resistance.


Assuntos
Actinas , Simulação de Dinâmica Molecular , Naftalenos , Oligopeptídeos , Actinas/metabolismo , Filogenia , Tiazolidinas/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia
3.
J Recept Signal Transduct Res ; 43(3): 83-92, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37990804

RESUMO

This study aims to develop a QSAR model for Antitubercular activity. The quantitative structure-activity relationship (QSAR) approach predicted the thiazolidine-4-ones derivative's Antitubercular activity. For the QSAR study, 53 molecules with Antitubercular activity on H37Rv were collected from the literature. Compound structures were drawn by ACD/Labs ChemSketch. The energy minimization of the 2D structure was done using the MM2 force field in Chem3D pro. PaDEL Descriptor software was used to construct the molecular descriptors. QSARINS software was used in this work to develop the 2D QSAR model. A series of thiazolidine 4-one with MIC data were taken from the literature to develop the QSAR model. These compounds were split into a training set (43 compounds) and a test set (10 compounds). The PaDEL software calculated 2300 descriptors for this series of thiazolidine 4-one derivatives. The best predictive Model 4, which has R2 of 0.9092, R2adj of 0.8950 and LOF parameter of 0.0289 identify a preferred fit. The QSAR study resulted in a stable, predictive, and robust model representing the original dataset. In the QSAR equation, the molecular descriptor of MLFER_S, GATSe2, Shal, and EstateVSA 6 positively correlated with Antitubercular activity. While the SpMAD_Dzs 6 is negatively correlated with Antitubercular activity. The high polarizability, Electronegativities, Surface area contributions and number of Halogen atoms in the thiazolidine 4-one derivatives will increase the Antitubercular activity.


Assuntos
Antituberculosos , Relação Quantitativa Estrutura-Atividade , Modelos Moleculares , Tiazolidinas/farmacologia , Tiazolidinas/química , Antituberculosos/farmacologia , Antituberculosos/química , Software
4.
Comput Biol Chem ; 107: 107958, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37714080

RESUMO

Novel thiazolidine-2,4-dione derivatives, 11a-g, were designed, and synthesized targeting the VEGFR-2 protein. The in vitro studies indicated the abilities of the synthesized derivatives to inhibit VEGFR-2 and prevent the growth of two different cancer cell types, HepG2 and MCF-7. Compound 11 f exhibited the strongest anti-VEGFR-2 activity (IC50 = 0.053 µM). As well, compound 11 f showed impressive anti-proliferative activity against the mentioned cancer cell lines with IC50 values of 0.64 ± 0.01 and 0.53 ± 0.04 µM, respectively. Additionally, compound 11 f arrested the MCF-7 cell cycle at the S phase and increased the overall apoptosis percentage. Furthermore, cell migration assay revealed that compound 11 f has a significant ability to prevent migration and healing potentialities of MCF-7. Moreover, computational studies were used to conduct the molecular investigation of the VEGFR-2-11 f complex. The kinetic and structural features of the complex were examined using molecular dynamics simulations and molecular docking. Besides, Principal component analysis (PCA) was used to explain the dynamics of the VEGFR-2-11 f complex at various spatial scales. The DFT calculations also provided further clarity regarding compound 11 f's structural and electronic features. To evaluate how closely the developed compounds might look like drugs, ADMET and toxicity experiments were computed. To conclude, the presented study demonstrates the potential of compound 11 f as a viable anti-cancer drug, which can serve as a prototype for future structural modifications and further biological investigations.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estrutura Molecular , Fosforilação , Inibidores de Proteínas Quinases , Relação Estrutura-Atividade , Tiazolidinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
5.
Molecules ; 28(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37764394

RESUMO

Derivatives combining acridine, pyrrole, and thiazolidine rings have emerged as promising candidates in the field of antitumor drug discovery. This paper aims to highlight the importance of these three structural motifs in developing potent and selective anticancer agents. The integration of these rings within a single molecule offers the potential for synergistic effects, targeting multiple pathways involved in tumor growth and progression. Spiro derivatives were efficiently synthesized in a two-step process starting from isothiocyanates and 2-cyanoacetohydrazide. The thiourea side chain in spiro derivatives was utilized as a key component for the construction of the thiazolidine-4-one ring through regioselective reactions with bifunctional reagents, namely methyl-bromoacetate, dietyl-acetylenedicarboxylate, ethyl-2-bromopropionate, and ethyl-2-bromovalerate. These reactions resulted in the formation of a single regioisomeric product for each derivative. Advanced spectroscopic techniques, including 1D and 2D NMR, FT-IR, HRMS, and single-crystal analysis, were employed to meticulously characterize the chemical structures of the synthesized derivatives. Furthermore, the influence of these derivatives on the metabolic activity of various cancer cell lines was assessed, with IC50 values determined via MTT assays. Notably, derivatives containing ester functional groups exhibited exceptional activity against all tested cancer cell lines, boasting IC50 values below 10 µM. Particularly striking were the spiro derivatives with methoxy groups at position 3 and nitro groups at position 4 of the phenyl ring. These compounds displayed remarkable selectivity and exhibited heightened activity against HCT-116 and Jurkat cell lines. Additionally, 4-oxo-1,3-thiazolidin-2-ylidene derivatives demonstrated a significant activity against MCF-7 and HCT-116 cancer cell lines.


Assuntos
Acridinas , Antineoplásicos , Humanos , Pirróis/farmacologia , Tiazolidinas/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Antineoplásicos/farmacologia , Células HCT116
6.
Chem Biodivers ; 20(8): e202300626, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37477542

RESUMO

In this study, new chiral thiourea and 1,3-thiazolidine-4,5-dione derivatives were synthesized, it was aimed to evaluate the various biological activities and molecular docking of these compounds. Firstly, the new thioureas (1-16) were obtained by reacting 1-naphthylisothiocyanate with different chiral amines. Then, the chiral thioureas were cyclized with oxalyl chloride to obtain 1,3-thiazolidine-4,5-dione derivatives (17-32). All compounds were evaluated with several in vitro antioxidant and enzyme inhibition activities. Compound 30 was the most active compound against AChE, with a value of IC50 =8.09±0.58 µM. On the other hand, all compounds were tested in silico absorption, distribution, metabolism, and excretion (ADME) assays to better understand their bioavailability. These physicochemical properties, pharmacokinetics, and drug-likeness of all compounds were calculated using SwissADME. Furthermore, according to molecular docking analyses compound 30 exhibited significant binding affinities for all enzymes. Based on our overall observations, compound 30 could be recommended as a potential lead for the therapuetic of Alzheimer's.


Assuntos
Antioxidantes , Tioureia , Estrutura Molecular , Simulação de Acoplamento Molecular , Tiazolidinas/farmacologia , Tioureia/farmacologia , Tioureia/química , Antioxidantes/farmacologia , Antioxidantes/química , Relação Estrutura-Atividade
7.
Bioorg Chem ; 139: 106724, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451146

RESUMO

Fragment merging approach was applied for the design of thiazole/thiazolidinone clubbed pyrazoline derivatives 5a-e, 6a-c, 7 and 10a-d as dual COX-2 and 5-LOX inhibitors. Compounds 5a, 6a, and 6b were the most potent and COX-2 selective inhibitors (IC50= 0.03-0.06 µM, SI = 282.7-472.9) with high activity against 5-LOX (IC50 = 4.36-4.86 µM), while compounds 5b and 10a were active and selective 5-LOX inhibitors with IC50 = 2.43 and 1.58 µM, respectively. In vivo assay and histopathological examination for most active candidate 6a revealed significant decrease in inflammation with higher safety profile in comparison to standard drugs. Compound 6a exhibited the same orientation and binding interactions as the reference COX-2 and 5-LOX inhibitors (celecoxib and quercetin, respectively). Consequently, compound 6a has been identified as a potential lead for further optimization and the development of safe and effective anti-inflammatory drugs.


Assuntos
Anti-Inflamatórios , Tiazóis , Anti-Inflamatórios/farmacologia , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/química , Desenho de Fármacos , Inibidores de Lipoxigenase/farmacologia , Inibidores de Lipoxigenase/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tiazóis/farmacologia , Tiazolidinas/farmacologia , Pirazóis/química , Pirazóis/farmacologia
8.
J Enzyme Inhib Med Chem ; 38(1): 2231170, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37470409

RESUMO

This research study describes the development of new small molecules based on 2,4-thiazolidinedione (2,4-TZD) and their aldose reductase (AR) inhibitory activities. The synthesis of 17 new derivatives of 2,4-TZDs hybrids was feasible by incorporating two known bioactive scaffolds, benzothiazole heterocycle, and nitro phenacyl moiety. The most active hybrid (8b) was found to inhibit AR in a non-competitive manner (0.16 µM), as confirmed by kinetic studies and molecular docking simulations. Furthermore, the in vivo experiments demonstrated that compound 8b had a significant hypoglycaemic effect in mice with hyperglycaemia induced by streptozotocin. Fifty milligrams per kilogram dose of 8b produced a marked decrease in blood glucose concentration, and a lower dose of 5 mg/kg demonstrated a noticeable antihyperglycaemic effect. These outcomes suggested that compound 8b may be used as a promising therapeutic agent for the treatment of diabetic complications.


Assuntos
Aldeído Redutase , Hipoglicemiantes , Animais , Camundongos , Aldeído Redutase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Hipoglicemiantes/farmacologia , Cinética , Simulação de Acoplamento Molecular , Tiazolidinas/farmacologia
9.
Bioorg Chem ; 139: 106708, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37487425

RESUMO

To improve the antiproliferative effect of ALC67 (diastereomeric mixture of ethyl 2-phenyl-3-propioloyl-1,3-thiazolidine-4-carboxylate), its structure was modified via (i) bioisosteric substitution of the phenyl ring by the ferrocene unit and (ii) replacing the propiolamide side-chain in ACL67 with other acyl groups having differing electrophilicities. In this way, a small library of methyl N-acyl-2-ferrocenyl-1,3-thiazolidine-4-carboxylates (13 compounds in total) was created and characterized by spectral and crystallographic means. The last N-acylation step was highly diastereoselective toward the cis-diastereomer. In solution, most of the obtained compounds existed as a mixture of two rotamers and displayed a preference for the syn-orientation around the CN bond. A twisted 5T4 envelope conformation was adopted by the derivative containing the N-phenoxyacetyl group in the crystalline state. Two derivatives with chloroacetyl and bromoacetyl groups in the N-3 side chain were cytotoxic to fibroblasts and hepatocellular cancer cells in the low micromolar range (IC50(MRC5) = 9.0 and 11.8 µM, respectively, and IC50(HepG2) = 10.6 and 18.4 µM, respectively) causing an effect similar to the lead compound (IC50(HepG2) = 10.0 µM) and cisplatin (IC50(MRC5) = 4.0 µM and IC50(HepG2) = 7.7 µM). Several derivatives also manifested modest antimicrobial effects against the studied microbial strains (MICs in the range from 0.44 to 4.0 µmol/mL). Our findings demonstrated that the introduction of a ferrocene core facilitated the preparation of optically pure analogs of ALC67 and that the cytotoxicity of compounds may be enhanced by adding proper electrophilic centers to the N-acyl side-chain.


Assuntos
Anti-Infecciosos , Antineoplásicos , Tiazolidinas/farmacologia , Metalocenos/farmacologia , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Anti-Infecciosos/farmacologia , Proliferação de Células
10.
Arch Pharm (Weinheim) ; 356(7): e2300137, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37147779

RESUMO

Novel thiazolidine-2,4-diones have been developed and estimated as conjoint inhibitors of EGFRT790M and VEGFR-2 against HCT-116, MCF-7, A549, and HepG2 cells. Compounds 6a, 6b, and 6c were known to be the dominant advantageous congeners against HCT116 (IC50 = 15.22, 8.65, and 8.80 µM), A549 (IC50 = 7.10, 6.55, and 8.11 µM), MCF-7 (IC50 = 14.56, 6.65, and 7.09 µM) and HepG2 (IC50 = 11.90, 5.35, and 5.60 µM) mass cell lines, correspondingly. Although compounds 6a, 6b, and 6c disclosed poorer effects than sorafenib (IC50 = 4.00, 4.04, 5.58, and 5.05 µM) against the tested cell sets, congeners 6b and 6c demonstrated higher actions than erlotinib (IC50 = 7.73, 5.49, 8.20, and 13.91 µM) against HCT116, MCF-7 and HepG2 cells, yet lesser performance on A549 cells. The hugely effective derivatives 4e-i and 6a-c were inspected versus VERO normal cell strains. Compounds 6b, 6c, 6a, and 4i were found to be the most effective derivatives, which suppressed VEGFR-2 by IC50 = 0.85, 0.90, 1.50, and 1.80 µM, respectively. Moreover, compounds 6b, 6a, 6c, and 6i could interfere with the EGFRT790M performing strongest effects with IC50 = 0.30, 0.35, 0.50, and 1.00 µM, respectively. What is more, 6a, 6b, and 6c represented satisfactory in silico computed ADMET profile.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Tiazolidinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptores ErbB/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Simulação de Acoplamento Molecular , Mutação , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Estrutura Molecular
11.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37047765

RESUMO

Combining chemotherapy with immunotherapy still remains a regimen in anticancer therapy. Novel 4-thiazolidinone-bearing hybrid molecules possess well-documented anticancer activity, and together with anti-HER2 antibodies, may represent a promising strategy in treating patients with gastric cancer with confirmed human epidermal growth factor receptor 2 (HER2) expression. The aim of the study was to synthesize a new 4-thiazolidinone derivative (Les-4367) and investigate its molecular mechanism of action in combination with trastuzumab or pertuzumab in human AGS gastric cancer cells. AGS cell viability and antiproliferative potential were examined. The effect of the tested combinations as well as monotherapy on apoptosis and autophagy was also determined. Metalloproteinase-2 (MMP-2), intercellular adhesion molecule 1 (ICAM-1), pro-inflammatory and anti-inflammatory cytokine concentrations were also demonstrated by the ELISA technique. We proved that pertuzumab and trastuzumab were very effective in increasing the sensitivity of AGS gastric cancer cells to novel Les-4367. The molecular mechanism of action of the tested combination is connected with the induction of apoptosis. Additionally, the anticancer activity is not associated with the autophagy process. Decreased concentrations of pro-inflammatory cytokines, MMP-2 and ICAM-1-were observed. The novel combination of drugs based on anti-HER2 antibodies with Les-4367 is a promising strategy against AGS gastric cancer cells.


Assuntos
Neoplasias Gástricas , Tiazolidinas , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Molécula 1 de Adesão Intercelular , Metaloproteinase 2 da Matriz , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Trastuzumab/farmacologia , Tiazolidinas/farmacologia
12.
Bioorg Chem ; 133: 106411, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36801792

RESUMO

A new series of 2,3-diaryl-1,3thiazolidin-4-one derivatives was designed, synthesized, and evaluated for their cytotoxicity and COXs inhibitory activities. Among these derivatives, compounds 4 k and 4j exhibited the highest inhibitory activities against COX-2 at IC50 values of 0.05 and 0.06 µM, respectively. Compounds 4a, 4b, 4e, 4 g, 4j, 4 k, 5b, and 6b, which exhibited the highest inhibition% against COX-2, were evaluated for their anti-inflammatory activity in rats. Results showed 41.08-82.00 % inhibition of paw edema thickness by the test compounds compared to celecoxib (inhibition% = 89.51 %). In addition, compounds 4b, 4j, 4 k, and 6b exhibited better GIT safety profiles compared to celecoxib and indomethacin. The four compounds were also evaluated for their antioxidant activity. The results revealed the highest antioxidant activity for 4j (IC50 = 45.27 µM) comparable to torolox (IC50 = 62.03 µM). The antiproliferative activity of the new compounds was evaluated against HePG-2, HCT-116, MCF-7, and PC-3 cancer cell lines. The results showed the highest cytotoxicity for compounds 4b, 4j, 4 k, and 6b (IC50 = 2.31-27.19 µM), with 4j being the most potent. Mechanistic studies revealed the ability of 4j and 4 k by inducing marked apoptosis and cell cycle arrest at the G1 phase in HePG-2 cancer cells. These biological results may also suggest a role for COX-2 inhibition in the antiproliferative activity of these compounds. The results of the molecular docking study for 4 k and 4j into the active site of COX-2 revealed good fitting and correlation with the results of the in vitro COX­2 inhibition assay.


Assuntos
Antineoplásicos , Citotoxinas , Ratos , Animais , Celecoxib , Simulação de Acoplamento Molecular , Ciclo-Oxigenase 2/metabolismo , Tiazolidinas/farmacologia , Citotoxinas/farmacologia , Antioxidantes/farmacologia , Anti-Inflamatórios/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular , Antineoplásicos/química , Desenho de Fármacos
13.
ChemMedChem ; 18(7): e202200618, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36694980

RESUMO

Molecular hybridization is deemed an optimistic approach in drug design and the discovery of novel biologically active molecules as it may advance their affinity and potency while concurrently decreasing associated resistance and side effects. Approximately 20 % of approved drugs were developed using this approach in the past few years. Thiazolidinone is one of the privileged pharmacophores in medicinal chemistry and is associated with various biological activities; it forms a functional unit in several FDA-approved drugs. Consequently, this pharmacophore has attracted the attention of many research groups to further explore its pharmacological relevance by coupling it with other pharmacophoric moieties. This review presents a concise account of scholarly research exploits directed at the biological activities of newly synthesized thiazolidinone-tagged molecular hybrids. Focused attention is given to the existing structural activity relationship in each compound library and the toxicity profile of potent compounds including in silico docking studies (where applicable). This work would provide a base on which new pharmaceuticals with improved potency can be modelled.


Assuntos
Química Farmacêutica , Desenho de Fármacos , Relação Estrutura-Atividade , Tiazolidinas/farmacologia , Tiazolidinas/química
14.
J Biomol Struct Dyn ; 41(9): 3976-3992, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35467480

RESUMO

Liver cancer accounts for a major portion of the global cancer burden. In many nations, the prevalence of this condition has risen in recent decades. New series of thiazolidinones and thiadiazolidine have been designed, synthesized, and evaluated for potential antioxidant and antihepatocarcinogenic activity. The antioxidant activity was evaluated using a DPPH assay. Furthermore, we examined the compounds against Hepg-2 cells using MTT assay, flow cytometry analysis through the cell cycle, reactive oxygen species, and apoptosis. The result showed that compound 6b has the highest antioxidant activity with IC50 = 60.614 ± 0.739 µM. The anticancer activity showed that compounds 5 and 6b have significant toxicity against liver cancer cells Hepg2, IC50 values (9.082 and 4.712) µM, respectively. Flow cytometry experiments revealed that compound 5 arrested Hepg-2 cells in the S process, while compound 6b arrested Hepg-2 cells in the G1. Compound 6b had a greater reduction in reactive oxygen species and late apoptosis than compound 5. Substantially, compound 5 had affinity energies of -7.6 and -8.5 for Akt and CDK4 proteins, respectively, but compound 6b had affinity energies of -7.8 and -10.1 for Akt1 and CDK4 proteins, respectively. Consequently, compound 6b had lower binding energies than compound 5. In this work, we used multiple bioinformatics methods to shed light on the prospective therapeutic use of these series as novel candidates to target immune cells in the tumor microenvironment of hepatocellular carcinomas such as CD8+ T cells, endothelial cells, and hematopoietic stem cells.


Assuntos
Antineoplásicos , Neoplasias Hepáticas , Humanos , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Antioxidantes/farmacologia , Antioxidantes/química , Tiazolidinas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Células Endoteliais , Espécies Reativas de Oxigênio , Linhagem Celular Tumoral , Apoptose , Estrutura Molecular , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Microambiente Tumoral
15.
Arch Pharm (Weinheim) ; 356(3): e2200465, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36403198

RESUMO

As dual EGFR and VEGFR-2 inhibitors, 22 innovative thiazolidine-2,4-diones were modeled, constructed, and measured for their anticancer performance versus four human neoplasms HCT-116, MCF-7, A549, and HepG2. Molecular docking and MD simulation were performed to inspect the binding technique of the proffered congeners with the EGFR and VEGFR-2 receptors. Evidence realized thanks to the docking inquests was vastly consistent together with that detected through the biological screening. Structures 14a and 14g emerged as the most active compounds toward HCT116 (IC50 = 6.01 and 7.44 µM), MCF-7 (IC50 = 5.77 and 7.23 µM), A549 (IC50 = 5.35 and 5.47 µM) and HepG2 (IC50 = 3.55 and 3.85 µM) tumefaction cells. Compounds 14a and 14g exhibited higher events than sorafenib (IC50 = 5.05, 5.58, 4.04, and 4.00 µM) against HepG2 instead subordinate incidents concerning A549, MCF-7, and HCT116, parallelly. Nevertheless, these compounds signified weightier performance than erlotinib (IC50 = 13.91, 8.20, 5.49, 7.73, and µM), with respect to the four cell lines. Compounds having the best activity against the four cell lines, 12a-f, 13a-d, and 14a-g were chosen to appraise their in vitro VEGFR-2 and EGFRT790M inhibiting activities. The best results were for compounds 14a and 14g compared to sorafenib and erlotinib, respectively, with IC50 values of 0.74 and 0.78 µM and 0.12 and 0.14 µM, respectively. Moreover, 13d, 14a, and 14g showed an adequate in silico calculated ADMET profile. The current investigation presents novel candidates for future optimization to construct mightier and eclectic binary VEGFR-2/EGFRT790M restrainers with higher antitumor effects.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Sorafenibe/farmacologia , Relação Estrutura-Atividade , Cloridrato de Erlotinib/farmacologia , Receptores ErbB/metabolismo , Antineoplásicos/química , Tiazolidinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Proliferação de Células , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/química , Ensaios de Seleção de Medicamentos Antitumorais , Mutação , Estrutura Molecular , Desenho de Fármacos
16.
Arch Pharm (Weinheim) ; 356(2): e2200452, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36378997

RESUMO

The thiazolidine-4-one scaffold has recently emerged as a potential pharmacophore having clinical significance for medicinal chemists. This heterocyclic ring has been reported to possess a plethora of biological activities, including antidiabetic activity that has inspired researchers to integrate this core with different pharmacophoric fragments to design novel and effective antidiabetic leads. The antidiabetic activity has been observed due to the ability of the thiazolidine-4-one nucleus to interact with different biological targets, including peroxisome proliferator-activated receptor γ, protein tyrosine phosphatase 1B, aldose reductase, α-glucosidase, and α-amylase. The present review discusses the mode of action of thiazolidine-4-ones through these antidiabetic drug targets. This review attempts to summarize and analyze the recent developments with regard to the antidiabetic potential of thiazolidine-4-ones covering different synthetic strategies, structure-activity relationships, and docking studies reported in the literature. The significance of various structural modifications at C-2, N-3, and C-5 of the thiazolidine-4-one ring has also been discussed in this manuscript. This comprehensive compilation will provide an inevitable scope for the design and development of potential antidiabetic drug candidates having a thiazolidine-4-one core.


Assuntos
Hipoglicemiantes , Tiazolidinedionas , Relação Estrutura-Atividade , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Tiazolidinas/farmacologia , Tiazolidinas/química , PPAR gama/metabolismo , Tiazolidinedionas/química
17.
Eur J Med Chem ; 246: 114909, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36508971

RESUMO

The discovery of a new class of extracellular-signal-regulated kinase (ERK) inhibitors has been achieved via developing novel 2-imino-5-arylidene-thiazolidine analogues. A novel synthetic method employing a solid support-mediated reaction was used to construct the targeted thiazolidines through a cascade reaction with good yields. The chemical and physical stability of the new thiazolidine library has successfully been achieved by blocking the labile C5-position to aerobic oxidation. A cell viability study was performed using esophageal squamous cell carcinoma cell lines (KYSE-30 and KYSE-150) and non-tumorous esophageal epithelial cell lines (HET-1A and NES-G4T) through utilization of an MTT assay, revealing that (Z)-5-((Z)-4-bromobenzylidene)-N-(4-methoxy-2-nitrophenyl)-4,4-dimethylthiazolidin-2-imine (6g) was the best compound among the synthesized library in terms of selectivity. DAPI staining experiments were performed to visualize the morphological changes and to investigate the apoptotic activity. Moreover, western blots were used to probe the mechanism/pathway behind the observed activity/selectivity of thiazolidine 6g which established selective inhibition of phosphorylation in the ERK pathway. Molecular modeling techniques have been utilized to confirm the observed activity. A molecular docking study revealed similar binding interactions between the synthesized thiazolidines and reported co-crystalized inhibitors with ERK proteins. Thus, the present study provides a starting point for the development of interesting bioactive 2-imino-5-arylidene-thiazolidines.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Tiazolidinas/farmacologia , Tiazolidinas/química , Neoplasias Esofágicas/patologia , Sistema de Sinalização das MAP Quinases , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Proliferação de Células
18.
Bioorg Chem ; 130: 106235, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36375354

RESUMO

Thiazolidinedione (TZD) based medications have demonstrated to enhance the insulin sensitivity control, hyperglycemia, and lipid metabolism in patients with type 2 diabetes. Hence, in this study, a new series of novel coumarin-4-yl-1,2,3-triazol-4-yl-methyl-thiazolidine-2,4-diones (TZD1-TZD18) were synthesized via copper (I)-catalyzed azide-alkyne cycloaddition "Click Chemistry". The synthesized compounds were evaluated for their glucose uptake assay and in vitro cytotoxicity against HEK-293 (human embryonic kidney) cells which were compared with the standard drug Pioglitazone. Further, molecular docking analysis of these compounds was carried out to explain the in vitro results with PPARγ (PDB ID: 3CS8) and to better understand the bonding interactions with the target protein. The outcomes of in vitro assessment, molecular docking, and pharmacokinetics of the title compounds were revealed to be highly correlated. Interestingly, the compounds TZD4, TZD10, TZD14 and TZD16 were most efficient in lowering the blood glucose level compared with standard drug.


Assuntos
Cumarínicos , Diabetes Mellitus Tipo 2 , Humanos , Cumarínicos/química , Cumarínicos/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose/metabolismo , Células HEK293 , Simulação de Acoplamento Molecular , Tiazolidinas/química , Tiazolidinas/farmacologia , Triazóis/química , Triazóis/farmacologia
19.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361924

RESUMO

Oncological diseases have currently reached an epidemic scale, especially in industrialized countries. Such a situation has prompted complex studies in medicinal chemistry focused on the research and development of novel effective anticancer drugs. In this review, the data concerning new 4-thiazolidinone-bearing hybrid molecules with potential anticancer activity reported during the period from the years 2017-2022 are summarized. The main emphasis is on the application of molecular hybridization methodologies and strategies in the design of small molecules as anticancer agents. Based on the analyzed data, it was observed that the main directions in this field are the hybridization of scaffolds, the hybrid-pharmacophore approach, and the analogue-based drug design of 4-thiazolidinone cores with early approved drugs, natural compounds, and privileged heterocyclic scaffolds. The mentioned design approaches are effective tools/sources for the generation of hit/lead compounds with anticancer activity and will be relevant to future studies.


Assuntos
Antineoplásicos , Desenho de Fármacos , Tiazolidinas/farmacologia , Tiazolidinas/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Química Farmacêutica
20.
ACS Chem Neurosci ; 13(23): 3291-3302, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36399525

RESUMO

Depression is a serious mental illness, mainly characterized as large mood swings and sleep, diet, and cognitive function disorders. NLPR3, one of the inflammasomes that can be activated by a variety of stimuli to promote the maturation and secretion of pro-inflammatory cytokines, has been considered to be involved in the pathophysiology of depression. In this study, the putative role of CY-09, a selective and direct inhibitor of NLRP3, was evaluated in the lipopolysaccharide (LPS)-induced mice. The results of the study indicated that CY-09 significantly decreased the levels of NLRP3 in the hippocampus of LPS-induced mice. In addition, CY-09 increased the sucrose preference and shortened the immobility time in LPS-induced mice, suggesting the antidepressant-like effects of inhibiting NLRP3 inflammasome. Biochemical analysis showed that LPS significantly activated the NLRP3/ASC/cytokine signaling pathway and caused microglial activation, while CY-09 prevented the changes. Moreover, CY-09 increased the brain-derived neurotrophic factor (BDNF) only in microglia but not in the whole hippocampus. Meanwhile, CY-09 did not promote neurogenesis in the hippocampus of LPS mice. In conclusion, the results of the study showed that the antidepressant-like effects of NLRP3 inhibitor CY-09 were mediated by alleviating neuroinflammation in microglia and independent of the neurotrophic function in the hippocampus.


Assuntos
Depressão , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Doenças Neuroinflamatórias , Tiazolidinas , Tionas , Animais , Camundongos , Inflamassomos/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Tionas/farmacologia , Tionas/uso terapêutico , Tiazolidinas/farmacologia , Tiazolidinas/uso terapêutico , Doenças Neuroinflamatórias/complicações , Depressão/tratamento farmacológico , Depressão/etiologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...